All minimal prime extensions of hereditary classes of graphs
نویسندگان
چکیده
The substitution composition of two disjoint graphs G1 and G2 is obtained by first removing a vertex x from G2 and then making every vertex in G1 adjacent to all neighbours of x in G2. Let F be a family of graphs defined by a set Z of forbidden configurations. Giakoumakis [V. Giakoumakis, On the closure of graphs under substitution, Discrete Mathematics 177 (1997) 83–97] proved that F, the closure under substitution of F , can be characterized by a set Z of forbidden configurations — the minimal prime extensions of Z . He also showed that Z is not necessarily a finite set. Since substitution preserves many of the properties of the composed graphs, an important problem is the following: find necessary and sufficient conditions for the finiteness of Z. Giakoumakis [V. Giakoumakis, On the closure of graphs under substitution, Discrete Mathematics 177 (1997) 83–97] presented a sufficient condition for the finiteness of Z and a simple method for enumerating all its elements. Since then, many other researchers have studied various classes of graphs for which the substitution closure can be characterized by a finite set of forbidden configurations. The main contribution of this paper is to completely solve the above problem by characterizing all classes of graphs having a finite number of minimal prime extensions. We then go on to point out a simple way for generating an infinite number of minimal prime extensions for all the other classes of F. c © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
4-Prime cordiality of some classes of graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
متن کاملLinear rank-width of distance-hereditary graphs II. Vertex-minor obstructions
In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomialtime algorithm, Algorithmica 78(1):342–377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this charac...
متن کاملMinimal classes of graphs of unbounded clique-width defined by finitely many forbidden induced subgraphs
We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of unbounded clique-width. The new examples include split permutation graphs and bichain graphs. Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These, therefore, disprove a conjecture due to Daligault, Rao and Thomassé from 2010 claiming that all such mi...
متن کاملAll Ramsey (2K2,C4)−Minimal Graphs
Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...
متن کاملGraph Parameters and Ramsey Theory
Ramsey’s Theorem tells us that there are exactly two minimal hereditary classes containing graphs with arbitrarily many vertices: the class of complete graphs and the class of edgeless graphs. In other words, Ramsey’s Theorem characterizes the graph vertex number in terms of minimal hereditary classes where this parameter is unbounded. In the present paper, we show that a similar Ramsey-type ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 370 شماره
صفحات -
تاریخ انتشار 2007